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MULTIPLE SCATTERING* 

0. A. GRIGOR'EV and T. D. SBERWERGOR 

Scattering coefficients and propagation velocities of longitudinal and transverse 
ultrasonic waves in polycrystals of cubic symmetry are calculated over the whole 
range of frequencies. The calculations are carried out in the Bourret approximation 
using methods of renormalization of the wave equation and re-expansion which takes 
into account multiple scattering with the exponential dependence on the correlation 

tensor coordinate. Asymptotics of low and high frequencies are determined, and 

numerical computations carried out for copper. The behavior of scattering coeffic- 
ients determined here conforms to the known formulas for regions of the Rayleigh, 

phase, and diffusive scattering. 

The propagation of ultrasonic waves in polycrystals is accompanied by their scattering 

over crystallites (inhomogeneity grains). A survey of publications on this subject appeared 

in /l/. This effect was first determined in /2/ in the Bourret approximation, using the 

method of wave equation renormalization for polycrystals of cubic symmetry. But only the 
asymptotics of long and short waves were considered under conditions of single scattering. 

The same method was used in /3/ for calculations over the whole range of wave lengths. 

The multiple scattering coefficients and propagation velocities of ultrasonic waves over 

the whole range of frequencies and dimensions of inhomogeneity grains are determined below 

by methods of the statistical theory of elasticity. 

1. Let us consider two bodies of the same dimensions and shape, one inhomogeneous whose 

effective dynamic modulus of elasticity is to be determined, the other a homogeneous reference 

body. The vector II of harmonic wave displacement in a medium defined by the tensor of elast- 

ic moduli C,,",, (r) satisfies the equation 

L&, = 0, L, z a,c,,,a, + PO%, d, = a 1 am (1.1) 

where p is the density of a medium which is assumed homogeneous, and o is the angular frequ- 

ency. We denote the quantities pertaining to the reference body by subscript c, those ex- 

traneous to that body by.primes and, where possible, omit tensor indices. 

Subtracting from Eq. (1.1) its value for the reference medium, we obtain 

&u's -Lu, L'=L-LL, (1.2) 

Using the Green's tensor G of the regular operator L,, we obtain the solution of Eq. 

(1.1) 
d = G * L'u (1.3) 

where the asterisk denotes an integral convolution. We represent the second derivative of 

Green's tensor in the form of the sum of its singular G(s) and formal G(f) parts. For a 

nontextured polycrystal we select a spherical surface of the integration element /4/, and 

introduce a tensor g and the integral operator p defined by the equalities 

gf G G(s) a f, pl' E G(f) * r (1.4) 

where f is an arbitrary function. The first of equalities (1.4) is trivial, since the depend- 

ence of G(q) on coordinates is s(r). 
We pass in (1.3) from the displacement vector to the strain tensor e, and assume that 

the reference body is large in comparison with the space correlation scale. Then 

e' -= (F[ + p)C'a (1.5) 

We separate the local associated with G(a) from the integral term which defines the non- 

local part of the interaction between inhomogeneities. We furthermore take into consideration 

that the contributions of local interactions between inhomogeneities can be exactly summed 

c = a -j ple, eE(I-@)a, l=C'(I-sC)-l 

e= (1 - pi)-'e,. I,,,,,. ='/z (4X%,.. + &&,) 

Ie = C'e 
~.____._.~.---- 

*Prikl.Matem.Mekhan.,44,No.2,310-319,1980 
217 

(1.6) 

(1.7) 

(1.8) 
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Assuming that the tensor field of elasticity moduli is ergodic /5,6/, the averaging of 

equality (1.8) yields 
l+(e)- {le:, I, (I -- g (C, - Cc))_’ (E) = (C, - C,) (E) (1.9) 

From equalities (1.7) and (1.9) we have /7/ 

l,=(lR), R~(I-ppl)-L<(I-pl)-‘)-‘=~ (HI)“, H=(I-M)p, MT=(f) 
,,-=,, 

Solution (1.10) represents an operator series whose determination requires the knowledge 

of multi-point moment functions of elastic constants. We set in (1.10) (I) = 0 and take in- 

to account only second order moments. This yields 

I*= (lpi) (1.11) 

Condition (1) = 0 improves the convergence of series (1.10) and simplifies the calcula- 

tion of I,. It simultaneously determines the constants of the reference body in the self- 

consistency approximation. In fact, if we assume that 

(I)= ((C - C,) (I - g.'(c - CJ'>)= 0 (1.12) 

then, introducing tensor b by the equality b :m- -Cc-g-‘, /4/we obtain the formula 

. C,. = ((C -c b)-‘)-’ - b (1.13) 

which, as shown in /8/, determines constants C,. in the self-consistency approximation. 

Equations similar to (1.9) and (1.11) are also obtained by the summation of the Feynman 

diagram /9,10/. 

The mean strain of harmonic waves depends on coordinates, which makes the direct determina- 
tion of C, by Eq. (1.9) impossible. However the application of the Fourier transform to that 

equation and the elimination of the transform (E) makes it possible to express the Fourier 

image C, of operator C, in terms of the Fourier image i, of operator I, 

c* - c, = (1 1. i*:w i, (1.14) 

2. Let us determine i, on the assumption that the tensor AC;;: and the coordinate W(T) 

functions have been separated. We have 

i*i,nzrr = AGYJ,,,.,.,, (lnicuc (r) limps (I’)) = Ai’;,U,“(p (r - r’) (2.1) 

where the integral 

where q is the wave vector for polycrystals q(r) = exp(- r/Q) /11/ and a is the correlation 

scale whose order of magnitude is the same as that of the inhomogeneity grain. Symmetrization 
is carried out with respect to indices appearing in parentheses. 

The substitution of variables cl = qk, c = qr , and p/c = n yields 

J ,,,“r,= S;G”’ nj(, , \)& exp (- d) c0.s (W dj C/Q (2.3) 

s=ll(yu), q= w/c (2.4) 

d Q z d 5 / 5” d 5, k,,,, 7. = k,k,,k,. . 

+JC’C”G!:~<,, s)(u (5, c, 11) = U,,,,, in bp,,,., ,- hb,,,.,, i- h&r, + II&, b., (2.5) 

t),,,.,. Gz h,(,&&.,,, (Pn,fi,a = 4&U",, ;- &,,,.I~ id r I~~,,,,.% I 

b,,,, = &UB&, t 6",&., t- bd,, 
where c is the wave phase velocity in the reference body. Formulas (2.3)- (2.5) are valid 
for longitudinal and transverse waves. In the first case all quantities must be expressed in 
terms of cl, 41, sir ad 51, and in the second in terms of et, qt, Zt, and ct. For functions 
h,,ci) and h,,(l) we have 

5" h,(') = d, (5s) - d, (5), 5' h,c') = d, (5) - dz (5r) (2.6) 

5" h,(') = d, ( CT$ - d, (L), h,(‘) = $ d, (b$ h,(‘) = ‘1” d, (bj) 

<” h,(l) = d, (5) - d, (cq), L2 h,(*) = d, (511) - d, (5) 

c* h,(') = d, (5) - d, (cq), h,(L) = d, (;), h>Q) = d, (5) 

d, (x) = (105 + 105 i x - 45 x2 - 10 ix3 + x”) em’” 

d, (x) = (15 + 15 ix _ 6 x9 _ i %3) e-‘” 

d, (x) = (3 + 3 i x - x2) e-'", d, (x) = - (1 + i x) ec’ 

(2.7) 

For simplicity the subscripts 1 and t at 5 and n have been omitted in formulas (2.6) and 
(2.7), respectively. The ratios 11, = I/ n( = c,/ C~ are denoted by I), and the wave 
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propagation velocities in the reference medium are determined by the bulk and shear moduli 

K, and K 

cl = [(K, + 4 pc / 3) / pl’/x, ct = :pLc / p)“z (2.8) 

The comparison of formulas (2.6) and (2.7) shows the following relationship between fun- 

ctions h,(l) and h,(‘) : 

h,(i) (&, q, qr) = - h,(‘) (52, ct> qt)t n. = 1, 2, 3 (2.9) 

h,,(l) ( ct, Q) =- h,,(‘) (&, ctr I), n = 4, 5 

which enables us to calculate the integral (2.3) for the case of transverse waves using its 

expression for longitudinal waves. 

Using formulas 

T,,,,., = s n,, NIS (6k) dQ = 4n (knwrsjl - (p,&15-'+ S,,,,i&-2) (2.10) 

T,,, E T,,,,,. = 45 (S,,,jl~-l - k,,,,,j& T = T,, = 4nj, 

where i,, ( 9 are spherical Bessel functions, with respect to angles, and obtain 

Integration of the expression (2.11) with respect to the variable 5 is carried out separately 

for longitudinal and transverse waves. 

3. Let us first consider longitudinal waves. To simplify presentation of quantitiessuch 

as c,q, X, and 11 we omit the subscript 1. We use the expressions for T in (2.10) and the 

explicit form of functions h,(') for longitudinal waves as defined in (2.6). Then formula 

(2.11) enables us to represent the sought integral J,,,,, in the form 

P c*Pn = R, (1~ PI - On (4 
R, = 35 R, + 10 R6 + q4 I,‘, R, = - 5 R, - R,, R, = 

3 I,’ + 3 i q Za2 - q2 (9 I,’ - I,‘) - 2 i q3 Zs2 + q4 1,’ 

R,=z---RR,--q4101, R5 = q2 I,’ + i q3 Iza + q4 I,’ 

(3.2) 

(3.3) 

I 
(3.4) 

Integrals I m are calculated similarly to the Hankel integral /12/, and are defined by 

the hypergeometri: function 

1 n,= -F “!rl 
(Ln + I)!! ( m -1 

n -&qn++; -p-q (3.5) 

In formula (3.4) m and n are nonnegative integers, and, in conformity with (2.4), 2 = 

Rea = Re fi is positive. Hence the integral I,,* exists throughout the whole region of admis- 

sible values of X, and P(a, b; c; 5) is an elementary function oi c. Furthermore, any three 

functions of the type F(n + pl, b + pl; c -I- pa; Q, where pl, pz, and p3 are integers (c # 0, 
-I,-2, . ...) linked by a linear homogeneous function whose coefficients are polynomials/l2/. 

A general formula similar to the Christoffel formula can be derived for the integrals 

(3.5) /12/, but it is more convenient to use recurrent relations 

I,? = p-1 II,,' - (2 n + 1) r:_,1 (3.61 

2 n (2 n + 1) z:,, = Ifi2 (2 n + 1) + (4 n - 1)l I,’ - (1 + p”) ZB1 

I,’ = 1 - 13 nrctg p-1, I,' = I/ (1 + B') 

which enable us to reduce the sought integral to integrals I,' and I,'. Formulas (3.6) are 

obtained from Gauss relationships for contiguous hypergeometric functions /12/ and the known 

representations of elementary functions 

p* / (1 + pz) = F (1, 3/2; 3/2; - PY), p arctg p-l = F (1, 112; 3/2; - fi-") 

Calculations by formulas (3.3)- (3.6) yield 

H, = x I<:, I- 10 11~ -+ tIa / (I + j3'), I<, = -5 R, - RS 

48 I{, = 48/35 + j3" (3315 + 8 B" + 3 B”) - 3 B (1 + 
(3.7) 
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3 6" + 3 6" + p") J - i qfI @l/5 + 38 pa + 21 6") + 

3 i q(2 + 9 p* + 15 (3" + 7 6")J - 6 $ (32/15 + 11 v 4 

9 6') + 6 q*fi(5 + 14 fiz + 9 6')J + 4 iq3B(13 + 5 6') 

12 i q3 (1 + 6 6" + 5 fl") J + 8 q4 (2 + 3 6") 24 - - q"p x 

(1 + p*) J, R, = -3 Rn - q4 / (1 + p2), 2 R5 = q* (2/3 + 
fi*) - qzp (1 + pa) J - 3 iq3fi + i q3 (1 + 3 pa) J + 2 ~1~5 

(J b - I), J z arctg p-l 

Corresponding expressions for Q,(a) (n =I, 2,3) are obtained from R,(q, p) by carrying 
out in (3.7) the substitutions B-+a and q--+f, when QJ = Q5 = 0. 

The complex variables a and p are determined by the expressions in parentheses in 
(3.4). We pass from these variables to variables qr and r,, then substitute the result 
into (3.2) and (3.7), and separate the real and imaginary parts of functions P,,. We obtain 

p cap, = a, + ib,, 

=,= 35 u1 + 1O(ua + us) + U, + Us, b, = 35 u.8 + lO(U, + 

us) + 4 + %I 

(3.8) 

(3.9) 

o,=---5y-~-us, a3=t+, bp=---5u,----uu, 
b3 = us 

a, = -3 uz - u,, as = 4, b. = -3 u1 - IL,,, b5 = u, 

(3.10) 

UT== - -&J-t +t,t,, u4=fz+ $ Wl. up = - 2qkru 

U 1o = 2 / Ix (4 + x*)1, t, = - arctg I2 x/ (3 - w)l 

tz :Yz x7 + 3 vxj + (1 + 2 V + 3 q4)23 + w"uz, t, = arctg (2 /r) 

t, = x' + 6 x5 -t 8 2, t5 = q2 x (V + z"), t, = 2 x + z? 

t,=ln[1+41~/(2~-~u-2q)l, t,=-ln(1+4/x*) 

I7=1++, w--I-$, 1/1L=x4+2vx~+zu~ 

The integral J”‘. nlLK3 for transverse waves can be similarly calculated. However, a more 
direct way is to use formulas (2.91, since this enables us to utilize formulas (3.7) for long- 

itudinal waves. The integral J$:j,,. is determined by formulas (3.11, (3.8), and (3.10), but 

now r :- xt G (1) a / c, and q =: q* zz c,/ c, , and it is necessary to substitute in formulas (3.9) 

- Ul, - us, - k, - Us, - U4, - Us, - u,, - UT, - %ll and - ug for ulr up, . . . , u,~. 
The respective limit values for asymptotics of short and long waves can be determinedby 

using the obtained general formulas and passing to Limit in formulas (3.1), and (3.8)--(3.10) _ 
For asymptotics of short waves the series expansion in the small parameter x = I/ (qa) <1 
yields for the integral J,,,,,, the expression 

Yi 
For asymptotics of long waves the series expansion in the small parameter 1 / z :: r,rr .-<z 3 

.eld the expression 

J ,,,“, I 7. a2 03 I- ,,,,_, s f- in3 co3 Z,,,.,., 

p I',,,,,, = (3 q ,,,, ,s - r! S,,,,.,,) c-2 (q-2 - cl-') / 105 - 

0 ,ilu,&-%-2 / r, -;- fi,,,, E (c*-4 - c,_') / 15 _I- 6,,(,S.,,,.c,-* (c-' - 

5 q-2); 1.5 

(3.12) 



Propagation of ultrasonic waves in polycrystals 221 

Integrals J($,., and J$$,.< are obtained from (3.12) by applying the respective substitu- 
tions C-C, or c+ c,. 

All of the above reasoning is valid forquasiisotropic polycrystals of arbitrary symmetry. 
Below, we present the calculation of scattering coefficients and ultrasonic wave propagation 
velocity in polycrystals of cubic symmetry. 

4. The method of determining constants K, and pe using a condition equivalent to (1.12) 
appeared in /ll/. If the cubic symmetry tensors C and 1 are represented by their matrix 
coefficients C,,, Cm, C,,. 111, IIS, and l,, , then in conformity with (1.6), the anisotropy para- 
meter h 

h = l,, - 11, - 2 l,, = cz [(I + x C,) (1 + x Cl + x c,)I-L (4.1) 

c, = 2 c,, - 2 p<:. c, G c,, - cl* - 2 c,,, x = 3 (K, + 2 pc) 15 pLp (3 K, + 4 pc)l-’ 

We introduce the symbolic notation form for the tensor function of the fourth rank in 
the isotropic space /13/ 

(&, E,, E,, E,, E&,, = Gk.,., + Ez (6,, k,. + 6, kw, + (4.2) 

&Ji,, + 'k&,3 - & (&,k + U,,,) + E, (4,&,, + k&J - ES 8,,6,., 

We substitute the obtained expression for the integral J,,,, and for the convolution 
of the covariant tensor of the polycrystal of cubic symmetry /14/ 

A n”W1, 
.-Lm" = A;$ = 0, A;;? = 21 5 (0, 0, 0, 3, 2),, (4.3) 

A :;$’ = 3 5 (0, 3,4, 5, 2),,,., A%’ = E (1, 5, 7, 5, i),,,, E G hz / 525 

into formula (2.1). We have 

1 mu,r, = 5 (P,, 5 Pa + 9 D, 7 P, + 12 D, 5 P, + 15 D + 
(4.4) 

63 D’, PI + 6 D + 42 D’),,,.,, D s 4 P, + P,, D’ G 2 P, + PI 

Examining the conditions of existence of mean fields in the form of plane waves, we come 
to the characteristic equation /ll/ 

det Ipo’6,, - q,tk,.S,,,.,l = 0 (4.5) 

where km = q_/q* and g, is a complex "wave vector". The three roots of Eq. (4.5), which 
are cubic relative to the square of the wave vector, make it possible to determine the correla- 
tion correction I?;,,,, contribtution to scattering. Let 

7’ c*, = kCwI&ors = (N”’ - NC’) + iAl”’ - iM"') Ii,,, f (N”’ + iM”‘) &r (4.6) 

Then, assuming the correlation correction to be small, we obtain 

(4.7) 

(4.8) 

where y is the scattering coefficient normalized with respect to a unit of length, and form- 
ula (4.8) for wave dispersion velocity V(O) is defined by the relation 

u = (d x I d 0)-l, q,, = x - i y 

5. After necessary calculations using formulas (1.14) and (4.4)- (4.7), we obtain for the 
scattering coefficient 

(5.1) 

m' = E' (2 a, - 2 U, + 4 UQ - 3 Ud + 4 US), n' = 2f3 111' f‘ 5' (2 us - 4) 

m” = E’ (2 u. - 2 u, + 4 U” - 5 us + 4 U,J, n” = 213 m” + E’ (2 %o - L18) 

E’ = 2 h” / (Ii.5 p c') 

where u,, h, and x are defined by Eqs. (3.10) and (4.1). 
To determine the scattering coefficients YI and yt of longitudinal and transverse wav- 

es, respectively, it is, thus, necessary to use the first and second of Eqs. (5.1). For pass- 
ing from parameter r to the wave number q formula (2.4) is used. All quantities pertaining 
to a particular wave form must bear the subscript 1 or t. We stress the necessity to use 
the subscripts, since ci # ct, 51 # 21, 111 =lfnt =c,/c,, etc. 
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For scattering coefficients (5.1) we obtain three asymptotics. When m’. m”. n’, n” e_I l/x, 

it is possible to equate the denominators in (5.1) to unity, and two cases are possible, viz. 
x%>l or sdl. In the first case, using asymptotics (3.12) we obtain for long waves 

In the second case,using formulas (3.11), 

M"aw" 
Yr= j%ji,'c.fi ' 

When m', m”, n’, n” > 1 I x we have z < 1 

(5.2) 

we have 

and, as implied by (5-l), (3.10), and (3.11), 

the expressions in brackets in formulas (5.1) can be neglected. For short waves this yields 

(5.4) 

Formulas (5.2) and (5.3) differ from those for asymptotics of single scattering in /2/ 

by that in them the calculation of the anisotropy parameter h takes into account the depend- 

ence of auxilliary elastic constants on the choice of the reference body. In asymptotics 
(5.4) parameters h and x are affected by the selection of the reference body. 

6. Using formulas (l-14), (3.8)-_(3.10), (4.4)- (4.6), and (4.8) for calculating the 

propagation velocities VL and vt of longitudinal and transverse waves, we obtain 

(6.1) 

(6.2) 

where 

Tjl = T (2 u1 - 2 us + 4 us - 5 ZLd + 4 us) + 1 (6.3) 

Tjz = z (2 ug - 2 u, + 4 U8 - 5 ug + 4 UIO) 

q3 = T (2 H, - 2 H, + 4 H, - 5 H, + 4 H,) 
q4 = z (2 H, - 2 H, + 4 H8 - 5 H, + 4 H,,) 

9’15 = 2/3 q~ + f/3 + + (2 us - ug), q,; = 2/3 qz + T (2 u,,, - up) 

q, = 2/3 q3 + z (2 H5 - Ha), qh = Y/3 q4 + T (2 H,, - If,) 

H, = l/2 + l/8 (t:w,; + w&), H, T 2 q (3 z’ $- 2 1.3.’ - IL.‘) u* 

H,, = -2 (3 + 4 5-y (z’ + 4)-x, WI = (a? -- If + 1) L‘ 

Lu$ = 7 t6 + 15 vx4 + 3 (1 + 2 u + 3 q’) x2 + zJJ%‘, 21.3 =- 2 ug 

~3~ = 7 x6 + 30 x’ + 24 .?, zo5 = 3 x2 qz + v q2, w -2 + J x2 

w, = 8 x q u, wp = 4 ulo, T = 2 x 1~~ / (175 p c”) 

The quanties W,U,U, and utl are defined by formulas (3.10), and I/ and x by formulas 

(4.1). 
Thus for the calculation of propagation velocities vI and ut of longitudinal and trans- 

verse waves formulas (6.11 and (6.2) are to be used, respectively. All quantities must bear 

subscript 1 or t. Formula (2.4) is used for passing from parameter 3: to the wave number 
4. 

Formulas for wave propagation velocities can be obtained in longwave approximation using 

formulas (2.54) and (2.55) in /ll/ by carrying out the substitution I',,--h and setting ol- 
(Ig = 0. The short wave dispersion velocity is slight. 

The dependence of dimensionless scattering coefficients on frequency and size of the in- 
homogeneity grain calculated by the derived here formulas for the general case and, also, for 
that of asymptotics of long and short waves are shown in Fig.1. The calculation relate to 
copper whose reference body elastic constants and moduli, expressed in units of 1(1'O N/m2,were 
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taken to be: C,,= 16.905, Cm= 12.193, C,,= 7.550, li,= 13.76, pe = 4.87 /15/, with the density p = 8960kg/cm! 
The correlation scale (1 wastakenequaltothegrainmeandiameter 6 /l/. 

The numerals 1 and 2 denote (in Fig.1) the scattering coefficients w (II) and vi (II) , 
respectively, for longitudinal and transverse waves. The dash lines relate to ye and YI 
calculated by asymptotic formulas for long and short waves. The quantities l/r, and 1 I z, 
for longitudinal and transverse waves are plotted on the axis of abscissas. 

In the high- and low-frequency regions (large and small inhomogeneity grains) YI >Yt I 
and in the intermediate region ri < Yf - It will be seen that when the wave length h consid- 
JY erably exceeds the grain dimension D, the coefficients of 

ultrasonic wave scattering by polycrystal grains are proportion- 
al to 7%'~~ (the Rayleigh scattering region), at lower values of 

I 
hl?, they are proportional to 6~2 (the phase scatter in region), 

and when hIEel they are inversely proportional to the grain 
size (the diffusion scattering region). A similar dependence 
is obtained also when the calculation is based on energy flux 
density at the grain boundary /16/. This dependence is, more- 
over, confirmed experimentally. 
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